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Abstract 
This paper presents a comparative analysis of various image denoising techniques using wavelet transforms. A 
lot of combinations have been applied in order to find the best method that can be followed for denoising 
intensity images. In this paper, we analyzed several methods of noise removal from degraded images with 
Gaussian noise by using adaptive wavelet threshold (Bayes Shrink, Neigh Shrink, Sure Shrink, Bivariate Shrink 
and Block Shrink) and compare the results in term of PSNR and MSE.   
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Introduction 
An image is often corrupted by noise in its 
acquisition and transmission. The goal of image 
denoising is to produce good estimates of the 
original image from noisy observations. Wavelet 
denoising attempts to remove the noise present in 
the signal while preserving the signal 
characteristics, regardless of its frequency content. 
 
 In the recent years there has been a fair amount of 
research on wavelet thresholding and threshold 
selection for signal de-noising [3], [5]-[6], [4], 
because wavelet provides an appropriate basis for 
separating noisy signal from the image signal. 
Wavelet thresholding is a signal estimation 
technique that exploits the capabilities of wavelet 
transform for signal denoising. It removes noise by 
killing coefficients that are insignificant relative to 
some threshold, and turns out to be simple and 
effective, depends heavily on the choice of a 
thresholding parameter and the choice of this 
threshold determines, to a great extent the efficacy 
of denoising. 
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Wavelet Thresholding 
Let f = { fij, i, j = 1, 2…M} denote the M×M matrix 
of the original image to be recovered and M is 
some integer power of 2. During transmission the 
signal f is corrupted by independent and identically 
distributed (i.i.d) zero mean, white Gaussian Noise 
nij with standard deviation σ i.e. nij ~ N (0, σ2) and 
at the receiver end, the noisy observations gij= f ij + 
σ nij is obtained. The goal is to estimate the signal f 
from noisy observations gij such that Mean Squared 
error (MSE) is minimum. Let W and W-1 denote 
the two dimensional orthogonal discrete wavelet 
transform (DWT) matrix and its inverse 
respectively. Then Y = Wg represents the matrix of 
wavelet coefficients of g having four sub bands 
(LL, LH, HL and HH) [6], [7]. The sub-bands HHk, 
HLk, LHk are called details, where k is the scale 
varying from 1, 2 …… J and J is the total number 
of decompositions. The size of the sub band at 
scale k is N/2k × N/2k. The sub band LLJ is the low-
resolution residue. The wavelet thresholding 
denoising method processes each coefficient of Y 
from the detail sub bands with a soft threshold 
function to obtain   . The denoised estimate is 

inverse transformed to  = . In the 
experiments, soft thresholding has been used over 
hard thresholding because it gives more visually 
pleasant images as compared to hard thresholding; 
reason being the latter is discontinuous and yields 
abrupt artifacts in the recovered images especially 
when the noise energy is significant. 

A. Bayes Shrink (BS) 
The Bayes Shrink method is effective for images 
including Gaussian noise. The observation model is 
expressed as follows: 
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Y = X + V 

                                                                          1 

Here Y is the wavelet transform of the degraded 
image, X is the wavelet transform of the original 
image, and V denotes the wavelet transform of the 
noise components following the Gaussian 
distribution N (0, σv 

2). Here, since X and V are 
mutually independent, the variances σy 

2, σx 
2 and 

σv 
2 of y, x and v are given by: 

 =  +  

                                                                     2 

It has been shown that the noise variance σy 
2 can 

be estimated from the first decomposition level 
diagonal sub-band HH1 by the robust and accurate 
median estimator. 

 =  

                                                                       3 

The variance of the sub-band of degraded image 
can be estimated as: 

 = 1\M  

                                                                  4 

Where Am, are the wavelet coefficients of sub-band 
under consideration, M is the total number of 
wavelet coefficient in that sub-band. The bayes 
shrink thresholding technique performs soft 
thresholding, with adaptive data driven, sub-band 
and level dependent near optimal threshold given 
by: 

 

                                                                         5 

 

 

x =  

                                                                            6 

In the case, where > ,  is taken to be zero, 

i.e. TBS→ ∞, or, in practice, TBS = max (|Am |), and 
all coefficients are set to zero. 
 

B. Neigh Shrink (NS) 
Let g= {gij} will denote the matrix representation of 
the noisy signal. Then, w Wg denotes the matrix of 
wavelet coefficients of the signal under 
consideration. For every value of wij, let Bij  is a 
neighboring window around wij, wij  denotes the 
wavelet coefficient to be shrinked. The neighboring 
window size can be represented asL L, where L is a 

positive odd number. A 3 3 neighboring window 
centered at the wavelet coefficient to be shrinked is 
shown in Fig 1. 

 

Fig.1. An illustration of the neighboring window of size 
3  3 centered at the wavelet coefficient to be shrinked 

Let 

 
                                                                                7 
We omit the corresponding terms in the summation 
when the above summation has pixel indexes out of 
the wavelet sub-band range. The shrinked wavelet 
coefficient according to the neighshrink is given by 
this formula: 

w’ ij = wij βij                                                                         8 
The shrinkage factor βij can be defined as: 

βij=(1-TUNI
2 /Sij

2)+ 

                                                                                9 
Here, the + sign at the end of the formula means to 
keep the positive value while set it to zero when it 
is negative and TUNI is the universal threshold, 
which is defined as: 
 

 
                                                                            10 
Where n is the length of the signal.  
Different wavelet coefficient sub-bands are 
shrinked independently, but the universal threshold 
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TUNI and neighboring window size L kept 
unchanged in all sub-bands. The estimated 
denoised signal f’= f’ ij is calculated by taking the 
inverse wavelet transform of the shrinked wavelet 
coefficients w’ ij i.e. f = W-1 w’. 
 
C. SureShrink 
SureShrink is a thresholding by applying sub-band 
adaptive threshold, a separate threshold is 
computed for each detail sub-band based upon 
SURE (Stein’s unbiased estimator for risk), a 
method for estimating the loss 2 in an 
unbiased fashion. In our case let wavelet 
coefficients in the jth sub-band be {Xi: i =1… d},  

is the soft threshold estimator i – ηi (X i), we apply 
Stein’s result to get an unbiased estimate of the risk 

E  

                                                                             11 
SURE (t: X) = d-2# {i: t}+  
For an observed vector x (in our problem, x is the 
set of noisy wavelet coefficients in a sub-band), we 
could find the threshold t S that minimizes SURE (t: 
x), 
tS =arg min SURE(t; X ) 
 
D. Bivariate Shrink 
New shrinkage function which depends on both 
coefficient and its parent yield improved results for 
wavelet based image denoising. Here, we modify 
the Bayesian estimation problem as to take into 
account the statistical dependency between a 
coefficient and its parent.  
Let w2 represent the parent of w1 (w2 is the wavelet 
coefficient at the same position as w1, but at the 
next coarser scale.)  Then  

y1=w1+n1 
y2=w2+n2 

                                                                                                                         12 
Where y1 and y2 are noisy observations of w1 and 
w2 and n1 and n2 are noise samples. 
Then we can write 

y=w + n 
y= (y1, y2) 

w= (w1, w2) 
n= (n1, n2) 

                                                                            13 
Standard MAP estimator for w given corrupted y is  

 

 
                                                                             14 
This equation can be written as  

 
   

                                                          
15 

   

                                                                               16 
According to bays rule allows estimation of 
coefficient can be found by probability densities of 
noise and prior density of wavelet coefficient. 
We assume noise is Gaussian then we can write 
noise as  

Pn (n) = 1/2Πσn
2*exp (-n1

2+n2
2/2σn

2)                
                                                                 17 
Joint of wavelet coefficients 

Pw (w) =3/2Πσ2*exp (-√3√w1
2+w2

2)/ σ)            
                                                                 18 
We know  

                                                                               19 
Let us define f (w) =log (pw (w)) 

Then using equation 18 and 19 

               

                                                                               20 

This equation is equivalent to solving following 
equations 

   

     (5.17) 

         21 

Here f1 and f2 represent the derivative of f (w) with 
respect to w1 and w2 respectively. 

We know f (w) can be written as 

 f (w)=log(pw(w)) 

         =log (3/2Πσ2*exp (-√3√w1
2+w2

2)/ σ)) 

         =log (3/2Πσ2) – (√3√w1
2+w2

2)/ σ 

From this 

                  22  

                    23       
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From equations (20), (21), (22) and (23) MAP 
estimator can be written as 

 

 

                                                                               24 

E. Block Shrink 
Block Shrink is a completely data-driven block 
thresholding approach and is also easy to 
implement. It utilizes the pertinence of the 
neighbour wavelet coefficients by using the block 
thresholding scheme. It can decide the optimal 
block size and threshold for every wavelet sub-
band by minimizing Stein’s unbiased risk estimate 
(SURE). The block thresholding simultaneously 
keeps or kills all the coefficients in groups rather 
than individually, enjoys a number of advantages 
over the conventional term-by-term thresholding. 
The block thresholding increases the estimation 
precision by utilizing the information about the 
neighbor wavelet coefficients 

PSNR 
PSNR stands for the peak signal to noise ratio. It is 
an engineering term used to calculate the ratio 
between the maximum possible power of a signal 
and the power of corrupting noise that affects the 
fidelity of its representation 
It is most commonly used as a measure of quality 
of reconstruction in image compression etc. It is 
calculated as the following: 

 PSNR=10 log (255/MSE) 2 

                                                                             25 

MSE 
MSE indicates average error of the pixels 
throughout the image. In our work, a definition of a 
higher MSE does not indicate that the denoised 
image suffers more errors instead it refers to a 
greater difference between the original and 
denoised image. This means that there is a 
significant speckle reduction. 

 

                                                                               26 

Result 

 

Fig.2 

 

Fig.3 

 

Fig.4 

Conclusion  
This thesis presents a comparative analysis of 
various image denoising techniques using wavelet 
transforms. A lot of combinations have been 
applied in order to find the best method that can be 
followed for denoising intensity images. The image 
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formats that have been used in this work are JPG, 
BMP, TIF and PNG. 
We observe how wavelet transforms can be 
implemented to scale and translate a noise speckle 
image into a multi-resolution analysis 
representation. Bivariate shrinkage function used to 
reduce Gaussian, Salt & Pepper and speckle noise 
at different resolution levels. These   results 
obtained have shown significant noise reduction 
then standard denoising methods such as Sure 
Shrink, ayes Shrink, Bivariate Shrinkage, Neigh 
Shrink and Block Shrink. 
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